

The Effects of Bio-Fuels and Other Alternative Fuels on SCR System Design and Performance

> Volker Rummenhohl Robert Johnson Fuel Tech, Inc.

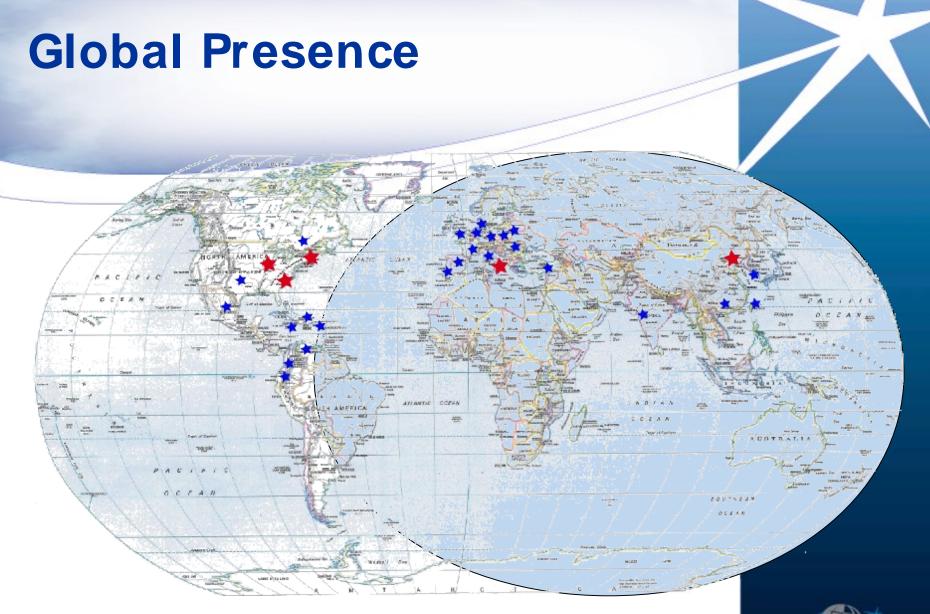
Presented by Doug Kirk Fuel Tech Western Regional Manager WRBA 2009 Spokane, WA March 10 -12, 2009

- Introduction
- Bio-Fuels
- Pet Coke
- Catalyst Poisons
- Operating Experience
- Design Considerations

Fuel Tech Overview

Innovative Approaches to Enable Clean Efficient Energy

- Capital Projects for Multi-Pollutant Control
- Advanced Combustion Technologies with Low NO_x Burners and Over Fire Air Systems
- NO_x Reduction Systems including NO_xOUT[®] SNCR and HERT Systems
- NO_xOUT[®] CASCADE (Hybrid SNCR/ SCR) and NO_xOUT[®] ULTRA
- Flue Gas Conditioning Systems for Particulate Control Outside US and Canada
- Sorbent Injecton for SO₂ Control


FUEL CHEM® Operating Programs

- Boiler Efficiency and Availability Improvements
- Slag and Corrosion Reduction
- Controls SO₃ Emissions and Addresses Related Issues
- CO₂ Reduction through Boiler Efficiency Improvements
- Targeted in Furnace Injection of Specialty Chemicals

Flow Modeling and SCR Catalyst Management Services

- Computational Flow Dynamics and Physical Modeling for Plant Systems
- SCR System Optimization and Catalyst Management Services

Office Locations: Warrenville, IL; Stamford, CT; Hookset, NH; Durham, NC; Milan, Italy; Beijing, China
 Countries where Fuel Tech does business: USA, Belgium, Canada, China, Columbia, Czech Republic,
 Denmark, Dominican Republic, Ecuador, France, Germany, India, Italy, Jamaica, Mexico, Poland, Portugal, Puerto Rico, Romania, South Korea, Spain, Taiwan, Turkey, United Kingdom, Venezuela

Why Co-Firing?

- Competitive Advantages
- Lower Fuel Costs
- Legislative Requirements
 - -New England, Europe
 - GHG Reductions
 - -Increase Green Power to Grid

Types of Bio Fuels

- Wood (pellets, chips)
- Straw (bales, pellets)
- Miscanthus
- Oil Seeds
- Bagasse
- Palm Kernels
- Maize
- Oat Grains

Relevant Fuel & Ash Data

- Ash Content
- Potassium
- Sodium
- Phosphorus

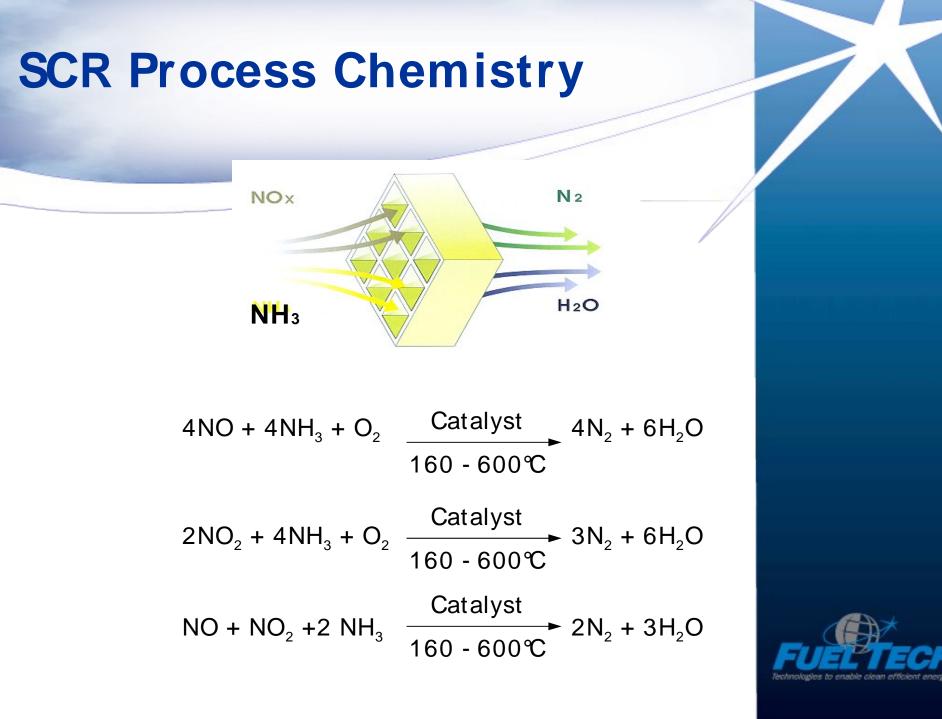
Principal Deactivating Elements for SCR catalyst.

Bio-Mass Fuel Specifications

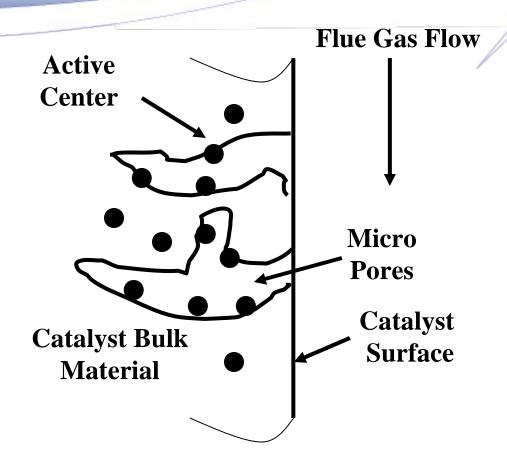
Whole tree chips (36% wt), urban Tree waste (20% wt), Site clearing (20% wt) Understory (12% wt), Sawdust (8% wt), Bark (4% wt).

Ash Elemental Analysis (wt %)			
	Typical	Min	Max
SiO2	24.4	8.8	56.7
AI2O3	3.8	1.5	8.4
TiO2	0.2	0.01	0.5
Fe2O3	2.3	0.7	7.9
CaO	33.5	18.2	47.1
MgO	2.6	0.9	5.2
К2О	14.9	2.2	25.7
Na2O	0.3	0.05	0.7
P2O5	1.5	0.3	3
SO3	1.5	0.6	2.4

Bio-Mass Fuel Specifications


ASH ANALYSIS, Wt.%						<u></u>
SiO ₂ - Silicon dioxide	20.50	49.93	62.97	18.64	7.40	10.00
Al ₂ O ₃ - Aluminium oxide	21.70	19.97	1.98	3.84	2.33	5.00
TiO ₂ - Titanium oxide	0.80	0.98	0.26	0.27	0.12	0.20
Fe_2O_3 - Ferric oxide	26.70	16.93	2.02	7.19	1.05	4.00
CaO - Calcium oxide	20.90	7.17	10.43	17.41	47.93	70.00
MgO - Magnesium Oxide	8.10	1.32	3.11	8.53	7.26	10.00
K ₂ O - Potash oxide	0.60	2.10	11.21	14.89	21.92	0.50
Na₂O - Sodium oxide	0.60	1.28	0.81	0.14	0.73	0.20
SO_3 - Sulphite						
P ₂ O ₅ - Phosphoric pentoxide	0.10	0.34	4.19	28.23	7.07	0.10

Relevant Fuel & Ash Data


- Limited Experience, Published Information
- Limits
 - One Catalyst Supplier
 - Potassium Oxide: <4%wt
 - Phosphorous Oxide: <3%wt
- Specific to Catalyst Supplier
- Dependent on Process Application
- High Variability due to Mix

Catalyst Material

Potassium, Sodium, Phosphorous will leach into catalyst pores under certain operating conditions and poison active sites.

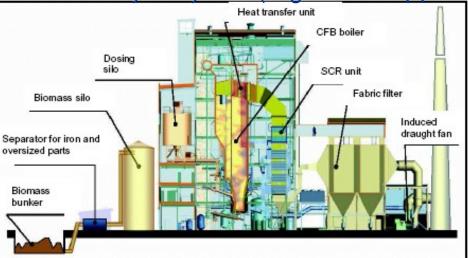
SCR Operating Experience

- 100%Bio Mass Fired Plants
 Austria, Simmering
- Denmark
 - -Amager (Tail End SCR)
- US

-New England (High Dust, RSCR)

SCR Operating Experience

- 100% Bio Mass Fired Plants
 - Projected Catalyst Deactivation
 - ~50%over 16,000 hours
 - Europe:
 - Tail End SCR
 - Published information indicates SCR bypass is common for High Dust installations


SCR Operating Experience

- Co-Firing Bio Mass Fired Plants
 - Denmark
 - Avedore (Flue Gas from Bio Mass boiler untreated by SCR)
 - US
 - CWLP Springfield

Plant Simmering

- Plant Background
 - Location: Vienna, Austria
 - Austria's Largest Biomass CoGen Plant (CFB Boiler; 65.7 MW Capacity)
 - Fires Wood Chips From Forest Residues (100 mm size maximum)
 - SNCR and Catalyst Hybrid (High Dust Application)

Plant Simmering

- Catalyst Design
 - Catalyst Supplied by Frauenthal (CERAM)
 - $41\%NO_x$ Reduction; 5 ppmvd NH₃ Slip
 - 7.4 mm Pitch (20 x 20 cell)
 & 0.8 mm wall thickness
 - Design SO_2/SO_3 Oxidation Rate < $3.0\%(NH_3 Off)$; Temp = 675 F
 - 6 x 2 Module Arrangement;
 1+1 Reactor

Plant Simmering

SCR Operations

- Catalyst Exposed ≈ 17,000 hrs
- Uses Steam Soot Blowers
- Catalyst Heated
 Using Dry Air to 266
 F
 - Before Flue Gas First Enters Reactor
- Catalyst Kept Warm
 & Dry
- "Deactivation Rate as Expected"

CWLP Dallman Unit 31

Plant Background

- B&W Cyclone (80 MW)
- Design Coal Illinois (3% Sulfur)
- SCR High Dust; Operational 2003
- Co-Firing 5%Seed Corn in 2004-05
 - 52%P₂O₅ in Ash of Seed
 Corn
 - Equates to Adding $\approx 0.5\%$ P₂O₅ To Coal
 - 0.6-1.5% Assuming 30/70 Split & All Phosphorous Converted to P₂O₅

Courtesy: CERAM Environmental

CWLP Dallman Unit 31

SCR Operations

- Layers 2 & 3
 Exposed ≈ 17,000
 hrs
- Operates \ge 92% NO_x Reduction
- Uses Steam Soot Blowers
- Reactor Kept Warm
 & Dry During
 Non-Ozone Season

CWLP Dallman Unit 31

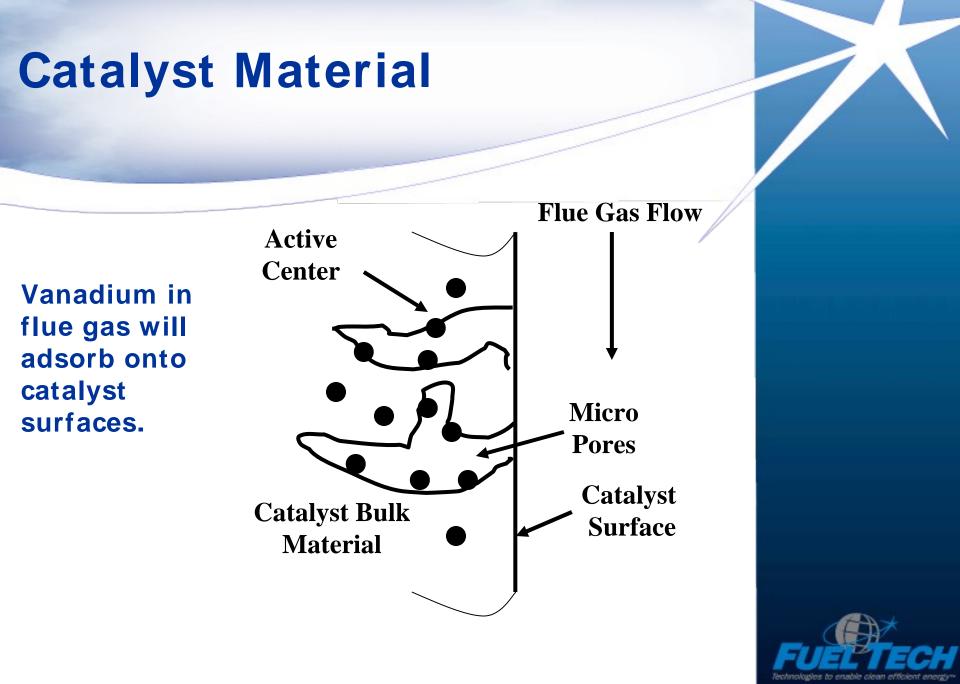
Effects of Biomass (Performance, Deactivation)

- Catalyst Deactivation Increased 2004-05 Due to Co-Firing Biomass in Unit 31
 - Test History Graph Showed 22%Unexpected Decrease in Relative Activity
 - Higher P₂O₅ Found in Bulk & Surface Chemical Analysis
- DeNOx Performance Still Achieved;

Design Considerations

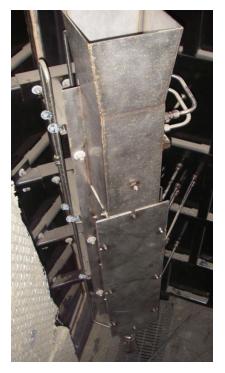
- Define the Fuel Mix
- Reduce base NOx via Burners, OFA, FGR and SNCR to lessen catalyst impact
- Select Appropriate Catalyst Geometry
- Adhere to Specific Operating Requirements
 - Start Up & Shutdown Procedures
 - Catalyst Warming
 - Catalyst Cleaning
 - Chemical ash conditioning
 - Steam Sootblowing vs Acoustic
 - Off-line Precautions
- Conservative Catalyst Management
- Catalyst Cleaning

Petroleum Coke


- High Btu content
- Low ash
- High Sulfur
- High Vanadium

Typical Analysis

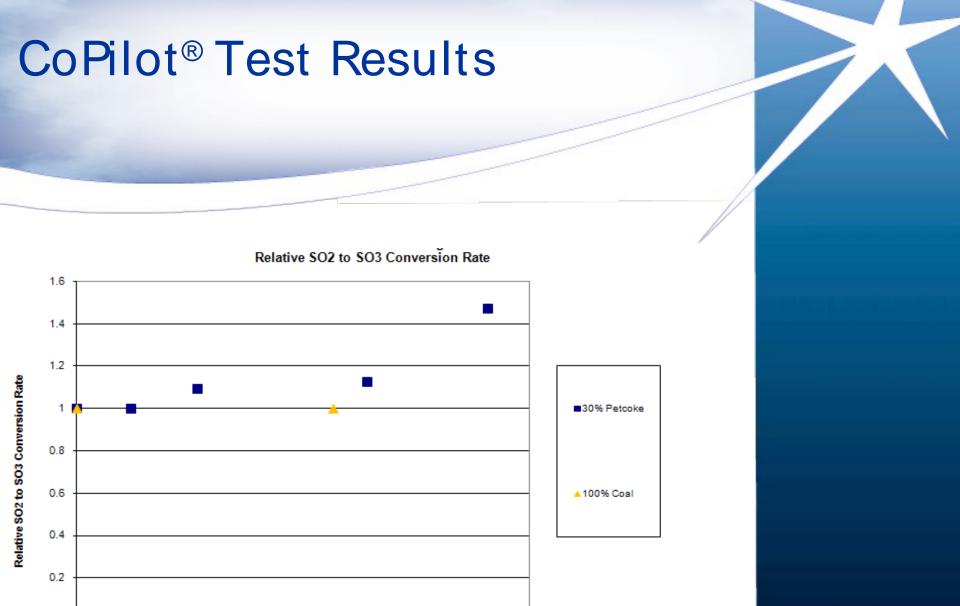
- Delayed Petroleum Coke Proximate Analysis / (%)
 - Fixed Carbon 83.92
 - VM 8.50
 - Ash 0.52
 - Moisture 7.06
- Ultimate Analysis (%)
 - Carbon 82.22
 - Hydrogen 3.35
 - Oxygen 0.00
 - Nitrogen 1.71
 - Sulfur 5.14
 - Ash 0.52
 - Moisture 7.06
- HHV, Btu/ Ib as rec'd 14,200
- Vanadium > 1000 ppmw



Vanadium Deposition

- Increase Catalyst Activity
- Increase Sulfur Oxidation Rates
- Changes to Long Term Catalyst
 Management Planning
 - Catalyst Cleaning
 - Catalyst Removal

Catalyst Characterization


CoPilot® Test Reactor

CoPilot[®] In-Situ Catalyst Demonstration Testing

- Characterize SO₂
 to SO₃ Conversion
 Rate Changes
- Characterize
 Catalyst Activity
 Changes



Hours

0 + 0

Catalyst Design

FUELECH Technologies to enable clean efficient energy

Courtesy: CERAM Environmental

Design Considerations

- Select Appropriate Catalyst Geometry & Oxidation Rate
- Adhere to Specific Operating Requirements
 - Start Up & Shutdown Procedures
 - Catalyst Warming
 - Catalyst Cleaning
 - Chemically Treat the Ash in the Furnace
 - Steam Sootblowing vs. Acoustic
 - Off-line Precautions
- Conservative Catalyst Management
- Catalyst Cleaning
- Possible SO₃ Mitigation Requirements

Conclusions

- SCR is an applicable technology for controlling NOx emissions from cofired units;
- Limited Operating Experience on bio-fuel units but growing;
- Fuel Mix and variability are very important design considerations.
- Balance of NOx reduction options ahead of catalyst will reduce impact on catalyst and improve management options

Thank You!

Questions

